Overview
The best general-purpose and multilingual retrieval quality. Visit the Voyage documentation for an overview of all Voyage embedding models and rerankers.
Access to models is through the Voyage Python client. You must register for Voyage API keys to access.
Using the model
Installation
!pip install -qU voyageai pinecone
Define Embedding Parameters
EMBEDDING_DIMENSION = 1024 # can choose between 1024 (default), 256, 512, and 2048
EMBEDDING_DTYPE = "float" # can choose between "float" (default), "int8", "uint8", "binary", "ubinary"
Create Index
from pinecone import Pinecone, ServerlessSpec
pc = Pinecone(api_key="API_KEY")
# Create Index
index_name = "voyage-3-large"
if not pc.has_index(index_name):
pc.create_index(
name=index_name,
dimension=EMBEDDING_DIMENSION,
metric="cosine",
spec=ServerlessSpec(
cloud="aws",
region="us-east-1"
)
)
index = pc.Index(index_name)
Embed & Upsert
# Embed data
data = [
{"id": "vec1", "text": "Apple is a popular fruit known for its sweetness and crisp texture."},
{"id": "vec2", "text": "The tech company Apple is known for its innovative products like the iPhone."},
{"id": "vec3", "text": "Many people enjoy eating apples as a healthy snack."},
{"id": "vec4", "text": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces."},
{"id": "vec5", "text": "An apple a day keeps the doctor away, as the saying goes."},
]
import voyageai
vo = voyageai.Client(api_key=VOYAGE_API_KEY)
model_id = "voyage-3-large"
def embed(docs: list[str], input_type: str) -> list[list[float]]:
embeddings = vo.embed(
docs,
model=model_id,
input_type=input_type,
output_dimension=EMBEDDING_DIMENSION,
output_dtype=EMBEDDING_DTYPE
).embeddings
return embeddings
# Use "document" input type for documents
embeddings = embed([d["text"] for d in data], input_type="document")
vectors = []
for d, e in zip(data, embeddings):
vectors.append({
"id": d['id'],
"values": e,
"metadata": {'text': d['text']}
})
index.upsert(
vectors=vectors,
namespace="ns1"
)
Query
query = "Tell me about the tech company known as Apple"
# Use "query" input type for queries
x = embed([query], input_type="query")
results = index.query(
namespace="ns1",
vector=x[0],
top_k=3,
include_values=False,
include_metadata=True
)
print(results)