POST
/
records
/
namespaces
/
{namespace}
/
search
from pinecone import Pinecone

pc = Pinecone(api_key="YOUR_API_KEY")

# To get the unique host for an index, 
# see https://docs.pinecone.io/guides/data/target-an-index
index = pc.Index("example-index")

# Search with a query text and rerank the results
# Supported only for indexes with integrated embedding
search_with_text = index.search(
    namespace="example-namespace", 
    query={
        "inputs": {"text": "Disease prevention"}, 
        "top_k": 4
    },
    fields=["category", "chunk_text"],
    rerank={
        "model": "bge-reranker-v2-m3",
        "top_n": 2,
        "rank_fields": ["chunk_text"] # Specified field must also be included in 'fields'
    }
)

print(search_with_text)

# Search with a query vector and rerank the results
search_with_vector = index.search(
    namespace="example-namespace", 
    query={
        "vector": {
            "values": [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
        }, 
        "top_k": 4
    },
    fields=["category", "chunk_text"],
    rerank={
        "query": "Disease prevention",
        "model": "bge-reranker-v2-m3",
        "top_n": 2,
        "rank_fields": ["chunk_text"] # Specified field must also be included in 'fields'
    }
)

print(search_with_vector)

# Search with a record ID and rerank the results
search_with_id = index.search(
    namespace="example-namespace", 
    query={
        "id": "rec1", 
        "top_k": 4
    },
    fields=["category", "chunk_text"],
    rerank={
        "query": "Disease prevention",
        "model": "bge-reranker-v2-m3",
        "top_n": 2,
        "rank_fields": ["chunk_text"] # Specified field must also be included in 'fields'
    }
)

print(search_with_id)
{'result': {'hits': [{'_id': 'rec3',
                      '_score': 0.004399413242936134,
                      'fields': {'category': 'immune system',
                                 'chunk_text': 'Rich in vitamin C and other '
                                                'antioxidants, apples '
                                                'contribute to immune health '
                                                'and may reduce the risk of '
                                                'chronic diseases.'}},
                     {'_id': 'rec4',
                      '_score': 0.0029235430993139744,
                      'fields': {'category': 'endocrine system',
                                 'chunk_text': 'The high fiber content in '
                                                'apples can also help regulate '
                                                'blood sugar levels, making '
                                                'them a favorable snack for '
                                                'people with diabetes.'}}]},
 'usage': {'embed_total_tokens': 8, 'read_units': 6, 'rerank_units': 1}}
from pinecone import Pinecone

pc = Pinecone(api_key="YOUR_API_KEY")

# To get the unique host for an index, 
# see https://docs.pinecone.io/guides/data/target-an-index
index = pc.Index("example-index")

# Search with a query text and rerank the results
# Supported only for indexes with integrated embedding
search_with_text = index.search(
    namespace="example-namespace", 
    query={
        "inputs": {"text": "Disease prevention"}, 
        "top_k": 4
    },
    fields=["category", "chunk_text"],
    rerank={
        "model": "bge-reranker-v2-m3",
        "top_n": 2,
        "rank_fields": ["chunk_text"] # Specified field must also be included in 'fields'
    }
)

print(search_with_text)

# Search with a query vector and rerank the results
search_with_vector = index.search(
    namespace="example-namespace", 
    query={
        "vector": {
            "values": [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
        }, 
        "top_k": 4
    },
    fields=["category", "chunk_text"],
    rerank={
        "query": "Disease prevention",
        "model": "bge-reranker-v2-m3",
        "top_n": 2,
        "rank_fields": ["chunk_text"] # Specified field must also be included in 'fields'
    }
)

print(search_with_vector)

# Search with a record ID and rerank the results
search_with_id = index.search(
    namespace="example-namespace", 
    query={
        "id": "rec1", 
        "top_k": 4
    },
    fields=["category", "chunk_text"],
    rerank={
        "query": "Disease prevention",
        "model": "bge-reranker-v2-m3",
        "top_n": 2,
        "rank_fields": ["chunk_text"] # Specified field must also be included in 'fields'
    }
)

print(search_with_id)
{'result': {'hits': [{'_id': 'rec3',
                      '_score': 0.004399413242936134,
                      'fields': {'category': 'immune system',
                                 'chunk_text': 'Rich in vitamin C and other '
                                                'antioxidants, apples '
                                                'contribute to immune health '
                                                'and may reduce the risk of '
                                                'chronic diseases.'}},
                     {'_id': 'rec4',
                      '_score': 0.0029235430993139744,
                      'fields': {'category': 'endocrine system',
                                 'chunk_text': 'The high fiber content in '
                                                'apples can also help regulate '
                                                'blood sugar levels, making '
                                                'them a favorable snack for '
                                                'people with diabetes.'}}]},
 'usage': {'embed_total_tokens': 8, 'read_units': 6, 'rerank_units': 1}}

Authorizations

Api-Key
string
header
required

An API Key is required to call Pinecone APIs. Get yours from the console.

Path Parameters

namespace
string
required

The namespace to search.

Body

application/json

A search request for records in a specific namespace.

query
object
required

The query inputs to search with. Each request can contain only one of the following parameters: inputs, vector, or id.

fields
string[]

The fields to return in the search results. If not specified, the response will include all fields.

Example:
["chunk_text"]
rerank
object

Parameters for reranking the initial search results.

Response

200
application/json
A successful search namespace response.

The records search response.

result
object
required
usage
object
required