Database
Inference
- Embed
- Rerank
Architecture
Indexes
Create an index with integrated embedding
Create an index with integrated embedding.
With this type of index, you provide source text, and Pinecone uses a hosted embedding model to convert the text automatically during upsert and search.
For guidance and examples, see Create an index.
POST
https://api.pinecone.io
/
indexes
/
create-for-model
# pip install --upgrade pinecone
from pinecone import Pinecone
pc = Pinecone(api_key="YOUR_API_KEY")
index_name = "docs-example"
index_model = pc.create_index_for_model(
name=index_name,
cloud="aws",
region="us-east-1",
embed={
"model":"llama-text-embed-v2",
"field_map":{"text": "chunk_text"}
}
)
# Import specific classes to get type hints and autocompletions
from pinecone import CloudProvider, AwsRegion, IndexEmbed, EmbedModel
index_model = pc.create_index_for_model(
name=index_name,
cloud=CloudProvider.AWS,
region=AwsRegion.US_EAST_1,
embed=IndexEmbed(
model=EmbedModel.Multilingual_E5_Large,
field_map={"text": "chunk_text"},
metric='cosine'
)
)
{'deletion_protection': 'disabled',
'dimension': 1024,
'embed': {'dimension': 1024,
'field_map': {'text': 'chunk_text'},
'metric': 'cosine',
'model': 'llama-text-embed-v2',
'read_parameters': {'input_type': 'query', 'truncate': 'END'},
'write_parameters': {'input_type': 'passage', 'truncate': 'END'}},
'host': 'docs-example-govk0nt.svc.aped-4627-b74a.pinecone.io',
'id': '9dabb7cb-ec0a-4e2e-b79e-c7c997e592ce',
'metric': 'cosine',
'name': 'docs-example',
'spec': {'serverless': {'cloud': 'aws', 'region': 'us-east-1'}},
'status': {'ready': True, 'state': 'Ready'},
'tags': None}
# pip install --upgrade pinecone
from pinecone import Pinecone
pc = Pinecone(api_key="YOUR_API_KEY")
index_name = "docs-example"
index_model = pc.create_index_for_model(
name=index_name,
cloud="aws",
region="us-east-1",
embed={
"model":"llama-text-embed-v2",
"field_map":{"text": "chunk_text"}
}
)
# Import specific classes to get type hints and autocompletions
from pinecone import CloudProvider, AwsRegion, IndexEmbed, EmbedModel
index_model = pc.create_index_for_model(
name=index_name,
cloud=CloudProvider.AWS,
region=AwsRegion.US_EAST_1,
embed=IndexEmbed(
model=EmbedModel.Multilingual_E5_Large,
field_map={"text": "chunk_text"},
metric='cosine'
)
)
{'deletion_protection': 'disabled',
'dimension': 1024,
'embed': {'dimension': 1024,
'field_map': {'text': 'chunk_text'},
'metric': 'cosine',
'model': 'llama-text-embed-v2',
'read_parameters': {'input_type': 'query', 'truncate': 'END'},
'write_parameters': {'input_type': 'passage', 'truncate': 'END'}},
'host': 'docs-example-govk0nt.svc.aped-4627-b74a.pinecone.io',
'id': '9dabb7cb-ec0a-4e2e-b79e-c7c997e592ce',
'metric': 'cosine',
'name': 'docs-example',
'spec': {'serverless': {'cloud': 'aws', 'region': 'us-east-1'}},
'status': {'ready': True, 'state': 'Ready'},
'tags': None}
Authorizations
Body
application/json
The desired configuration for the index and associated embedding model.
Response
201
application/json
The index has successfully been created for the embedding model.
The IndexModel describes the configuration and status of a Pinecone index.
Was this page helpful?
# pip install --upgrade pinecone
from pinecone import Pinecone
pc = Pinecone(api_key="YOUR_API_KEY")
index_name = "docs-example"
index_model = pc.create_index_for_model(
name=index_name,
cloud="aws",
region="us-east-1",
embed={
"model":"llama-text-embed-v2",
"field_map":{"text": "chunk_text"}
}
)
# Import specific classes to get type hints and autocompletions
from pinecone import CloudProvider, AwsRegion, IndexEmbed, EmbedModel
index_model = pc.create_index_for_model(
name=index_name,
cloud=CloudProvider.AWS,
region=AwsRegion.US_EAST_1,
embed=IndexEmbed(
model=EmbedModel.Multilingual_E5_Large,
field_map={"text": "chunk_text"},
metric='cosine'
)
)
{'deletion_protection': 'disabled',
'dimension': 1024,
'embed': {'dimension': 1024,
'field_map': {'text': 'chunk_text'},
'metric': 'cosine',
'model': 'llama-text-embed-v2',
'read_parameters': {'input_type': 'query', 'truncate': 'END'},
'write_parameters': {'input_type': 'passage', 'truncate': 'END'}},
'host': 'docs-example-govk0nt.svc.aped-4627-b74a.pinecone.io',
'id': '9dabb7cb-ec0a-4e2e-b79e-c7c997e592ce',
'metric': 'cosine',
'name': 'docs-example',
'spec': {'serverless': {'cloud': 'aws', 'region': 'us-east-1'}},
'status': {'ready': True, 'state': 'Ready'},
'tags': None}
Assistant
Responses are generated using AI and may contain mistakes.