Copy
from pinecone import Pinecone
pc = Pinecone(api_key="YOUR_API_KEY")
models = pc.inference.list_models()
print(models)
Copy
[{
"model": "llama-text-embed-v2",
"short_description": "A high performance dense embedding model optimized for multilingual and cross-lingual text question-answering retrieval with support for long documents (up to 2048 tokens) and dynamic embedding size (Matryoshka Embeddings).",
"type": "embed",
"supported_parameters": [
{
"parameter": "input_type",
"type": "one_of",
"value_type": "string",
"required": true,
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"type": "one_of",
"value_type": "string",
"required": false,
"default": "END",
"allowed_values": [
"END",
"NONE",
"START"
]
},
{
"parameter": "dimension",
"type": "one_of",
"value_type": "integer",
"required": false,
"default": 1024,
"allowed_values": [
384,
512,
768,
1024,
2048
]
}
],
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 2048,
"max_batch_size": 96,
"provider_name": "NVIDIA",
"supported_metrics": [
"cosine",
"dotproduct"
],
"supported_dimensions": [
384,
512,
768,
1024,
2048
]
}, {
"model": "multilingual-e5-large",
"short_description": "A high-performance dense embedding model trained on a mixture of multilingual datasets. It works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "embed",
"supported_parameters": [
{
"parameter": "input_type",
"type": "one_of",
"value_type": "string",
"required": true,
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"type": "one_of",
"value_type": "string",
"required": false,
"default": "END",
"allowed_values": [
"END",
"NONE"
]
}
],
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 507,
"max_batch_size": 96,
"provider_name": "Microsoft",
"supported_metrics": [
"cosine",
"euclidean"
],
"supported_dimensions": [
1024
]
}, {
"model": "pinecone-sparse-english-v0",
"short_description": "A sparse embedding model for converting text to sparse vectors for keyword or hybrid semantic/keyword search. Built on the innovations of the DeepImpact architecture.",
"type": "embed",
"supported_parameters": [
{
"parameter": "input_type",
"type": "one_of",
"value_type": "string",
"required": true,
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"type": "one_of",
"value_type": "string",
"required": false,
"default": "END",
"allowed_values": [
"END",
"NONE"
]
},
{
"parameter": "return_tokens",
"type": "any",
"value_type": "boolean",
"required": false,
"default": false
}
],
"vector_type": "sparse",
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 96,
"provider_name": "Pinecone",
"supported_metrics": [
"dotproduct"
]
}, {
"model": "bge-reranker-v2-m3",
"short_description": "A high-performance, multilingual reranking model that works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "rerank",
"supported_parameters": [
{
"parameter": "truncate",
"type": "one_of",
"value_type": "string",
"required": false,
"default": "NONE",
"allowed_values": [
"END",
"NONE"
]
}
],
"modality": "text",
"max_sequence_length": 1024,
"max_batch_size": 100,
"provider_name": "BAAI",
"supported_metrics": []
}, {
"model": "cohere-rerank-3.5",
"short_description": "Cohere's leading reranking model, balancing performance and latency for a wide range of enterprise search applications.",
"type": "rerank",
"supported_parameters": [
{
"parameter": "max_chunks_per_doc",
"type": "numeric_range",
"value_type": "integer",
"required": false,
"default": 3072,
"min": 1.0,
"max": 3072.0
}
],
"modality": "text",
"max_sequence_length": 40000,
"max_batch_size": 200,
"provider_name": "Cohere",
"supported_metrics": []
}, {
"model": "pinecone-rerank-v0",
"short_description": "A state of the art reranking model that out-performs competitors on widely accepted benchmarks. It can handle chunks up to 512 tokens (1-2 paragraphs)",
"type": "rerank",
"supported_parameters": [
{
"parameter": "truncate",
"type": "one_of",
"value_type": "string",
"required": false,
"default": "END",
"allowed_values": [
"END",
"NONE"
]
}
],
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 100,
"provider_name": "Pinecone",
"supported_metrics": []
}]
Authorizations
Query Parameters
Filter models by type ('embed' or 'rerank').
Filter embedding models by vector type ('dense' or 'sparse'). Only relevant when type=embed
.
Response
The list of available models.
Show child attributes
Show child attributes