PINECONE_API_KEY="YOUR_API_KEY"
curl -i -X GET "https://api.pinecone.io/indexes" \
-H "Api-Key: $PINECONE_API_KEY" \
-H "X-Pinecone-Api-Version: 2025-10"
{
"indexes": [
{
"name": "example-serverless-dedicated-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 1536,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-serverless-dedicated-index-bhnyigt.svc.aped-4627-b74a.pinecone.io",
"spec": {
"serverless": {
"region": "us-east-1",
"cloud": "aws",
"read_capacity": {
"mode": "Dedicated",
"dedicated": {
"node_type": "b1",
"scaling": "Manual",
"manual": {
"shards": 1,
"replicas": 2
}
},
"status": {
"state": "Scaling",
"current_shards": 1,
"current_replicas": 1
}
}
}
},
"deletion_protection": "enabled",
"tags": {
"tag0": "value0",
"tag1": "value1"
}
},
{
"name": "example-serverless-ondemand-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 1024,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-serverless-ondemand-index-bhnyigt.svc.aped-4627-b74a.pinecone.io",
"spec": {
"serverless": {
"region": "us-east-1",
"cloud": "aws",
"read_capacity": {
"mode": "OnDemand",
"status": {
"state": "Ready",
"current_shards": null,
"current_replicas": null
}
}
}
},
"deletion_protection": "enabled",
"tags": {
"tag1": "value1",
"tag2": "value2"
},
"embed": {
"model": "llama-text-embed-v2",
"field_map": {
"text": "text"
},
"dimension": 1024,
"metric": "cosine",
"write_parameters": {
"dimension": 1024,
"input_type": "passage",
"truncate": "END"
},
"read_parameters": {
"dimension": 1024,
"input_type": "query",
"truncate": "END"
},
"vector_type": "dense"
}
},
{
"name": "example-pod-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 768,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-pod-index-bhnyigt.svc.us-east-1-aws.pinecone.io",
"spec": {
"pod": {
"replicas": 1,
"shards": 1,
"pods": 1,
"pod_type": "s1.x1",
"environment": "us-east-1-aws"
}
},
"deletion_protection": "disabled",
"tags": null
}
]
}
List all indexes in a project.
PINECONE_API_KEY="YOUR_API_KEY"
curl -i -X GET "https://api.pinecone.io/indexes" \
-H "Api-Key: $PINECONE_API_KEY" \
-H "X-Pinecone-Api-Version: 2025-10"
{
"indexes": [
{
"name": "example-serverless-dedicated-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 1536,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-serverless-dedicated-index-bhnyigt.svc.aped-4627-b74a.pinecone.io",
"spec": {
"serverless": {
"region": "us-east-1",
"cloud": "aws",
"read_capacity": {
"mode": "Dedicated",
"dedicated": {
"node_type": "b1",
"scaling": "Manual",
"manual": {
"shards": 1,
"replicas": 2
}
},
"status": {
"state": "Scaling",
"current_shards": 1,
"current_replicas": 1
}
}
}
},
"deletion_protection": "enabled",
"tags": {
"tag0": "value0",
"tag1": "value1"
}
},
{
"name": "example-serverless-ondemand-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 1024,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-serverless-ondemand-index-bhnyigt.svc.aped-4627-b74a.pinecone.io",
"spec": {
"serverless": {
"region": "us-east-1",
"cloud": "aws",
"read_capacity": {
"mode": "OnDemand",
"status": {
"state": "Ready",
"current_shards": null,
"current_replicas": null
}
}
}
},
"deletion_protection": "enabled",
"tags": {
"tag1": "value1",
"tag2": "value2"
},
"embed": {
"model": "llama-text-embed-v2",
"field_map": {
"text": "text"
},
"dimension": 1024,
"metric": "cosine",
"write_parameters": {
"dimension": 1024,
"input_type": "passage",
"truncate": "END"
},
"read_parameters": {
"dimension": 1024,
"input_type": "query",
"truncate": "END"
},
"vector_type": "dense"
}
},
{
"name": "example-pod-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 768,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-pod-index-bhnyigt.svc.us-east-1-aws.pinecone.io",
"spec": {
"pod": {
"replicas": 1,
"shards": 1,
"pods": 1,
"pod_type": "s1.x1",
"environment": "us-east-1-aws"
}
},
"deletion_protection": "disabled",
"tags": null
}
]
}
PINECONE_API_KEY="YOUR_API_KEY"
curl -i -X GET "https://api.pinecone.io/indexes" \
-H "Api-Key: $PINECONE_API_KEY" \
-H "X-Pinecone-Api-Version: 2025-10"
{
"indexes": [
{
"name": "example-serverless-dedicated-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 1536,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-serverless-dedicated-index-bhnyigt.svc.aped-4627-b74a.pinecone.io",
"spec": {
"serverless": {
"region": "us-east-1",
"cloud": "aws",
"read_capacity": {
"mode": "Dedicated",
"dedicated": {
"node_type": "b1",
"scaling": "Manual",
"manual": {
"shards": 1,
"replicas": 2
}
},
"status": {
"state": "Scaling",
"current_shards": 1,
"current_replicas": 1
}
}
}
},
"deletion_protection": "enabled",
"tags": {
"tag0": "value0",
"tag1": "value1"
}
},
{
"name": "example-serverless-ondemand-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 1024,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-serverless-ondemand-index-bhnyigt.svc.aped-4627-b74a.pinecone.io",
"spec": {
"serverless": {
"region": "us-east-1",
"cloud": "aws",
"read_capacity": {
"mode": "OnDemand",
"status": {
"state": "Ready",
"current_shards": null,
"current_replicas": null
}
}
}
},
"deletion_protection": "enabled",
"tags": {
"tag1": "value1",
"tag2": "value2"
},
"embed": {
"model": "llama-text-embed-v2",
"field_map": {
"text": "text"
},
"dimension": 1024,
"metric": "cosine",
"write_parameters": {
"dimension": 1024,
"input_type": "passage",
"truncate": "END"
},
"read_parameters": {
"dimension": 1024,
"input_type": "query",
"truncate": "END"
},
"vector_type": "dense"
}
},
{
"name": "example-pod-index",
"vector_type": "dense",
"metric": "cosine",
"dimension": 768,
"status": {
"ready": true,
"state": "Ready"
},
"host": "example-pod-index-bhnyigt.svc.us-east-1-aws.pinecone.io",
"spec": {
"pod": {
"replicas": 1,
"shards": 1,
"pods": 1,
"pod_type": "s1.x1",
"environment": "us-east-1-aws"
}
},
"deletion_protection": "disabled",
"tags": null
}
]
}
Required date-based version header
This operation returns a list of all the indexes that you have previously created, and which are associated with the given project
The list of indexes that exist in the project.
List of indexes in the project
Show child attributes
The name of the index. Resource name must be 1-45 characters long, start and end with an alphanumeric character, and consist only of lower case alphanumeric characters or '-'.
1 - 45"example-index"
The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If the 'vector_type' is 'sparse', the metric must be 'dotproduct'. If the vector_type is dense, the metric defaults to 'cosine'.
Possible values: cosine, euclidean, or dotproduct.
The URL address where the index is hosted.
"semantic-search-c01b5b5.svc.us-west1-gcp.pinecone.io"
The spec object defines how the index should be deployed.
Show child attributes
Configuration needed to deploy a serverless index.
Show child attributes
The public cloud where you would like your index hosted.
Possible values: gcp, aws, or azure.
"aws"
The region where you would like your index to be created.
"us-east-1"
Response containing read capacity configuration
Show child attributes
The mode of the index. Possible values: OnDemand or Dedicated. Defaults to OnDemand. If set to Dedicated, dedicated.node_type, and dedicated.scaling must be specified.
The current status of factors affecting the read capacity of a serverless index
Show child attributes
The state describes the overall status of factors relating to the read capacity of an index.
Available values:
Ready is the state most of the timeScaling if the number of replicas or shards has been recently updated by calling the configure index endpointMigrating if the index is being migrated to a new node_typeError if there is an error with the read capacity configuration. In that case, see error_message for more details.The number of replicas. Each replica has dedicated compute resources and data storage. Increasing this number will increase the total throughput of the index.
The number of shards. Each shard has dedicated storage. Increasing shards alleiviates index fullness.
An optional error message indicating any issues with your read capacity configuration
{
"mode": "OnDemand",
"status": { "state": "Ready" }
}The name of the collection to be used as the source for the index.
"movie-embeddings"
Schema for the behavior of Pinecone's internal metadata index. By default, all metadata is indexed; when schema is present, only fields which are present in the fields object with a filterable: true are indexed. Note that filterable: false is not currently supported.
Show child attributes
A map of metadata field names to their configuration. The field name must be a valid metadata field name. The field name must be unique.
{
"fields": {
"description": { "filterable": true },
"genre": { "filterable": true },
"year": { "filterable": true }
}
}{
"pod": {
"environment": "us-east-1-aws",
"metadata_config": {
"indexed": ["genre", "title", "imdb_rating"]
},
"pod_type": "p1.x1",
"pods": 1,
"replicas": 1,
"shards": 1
}
}The current status of the index
{
"ready": true,
"state": "ScalingUpPodSize"
}The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
The dimensions of the vectors to be inserted in the index.
1 <= x <= 200001536
The private endpoint URL of an index.
"semantic-search-c01b5b5.svc.private.us-west1-gcp.pinecone.io"
Whether deletion protection is enabled/disabled for the index.
Possible values: disabled or enabled.
Custom user tags added to an index. Keys must be 80 characters or less. Values must be 120 characters or less. Keys must be alphanumeric, '', or '-'. Values must be alphanumeric, ';', '@', '', '-', '.', '+', or ' '. To unset a key, set the value to be an empty string.
Show child attributes
{ "tag0": "val0", "tag1": "val1" }The embedding model and document fields mapped to embedding inputs.
Show child attributes
The name of the embedding model used to create the index.
"multilingual-e5-large"
The distance metric to be used for similarity search. You can use 'euclidean', 'cosine', or 'dotproduct'. If not specified, the metric will be defaulted according to the model. Cannot be updated once set.
Possible values: cosine, euclidean, or dotproduct.
The dimensions of the vectors to be inserted in the index.
1 <= x <= 200001536
The index vector type. You can use 'dense' or 'sparse'. If 'dense', the vector dimension must be specified. If 'sparse', the vector dimension should not be specified.
Identifies the name of the text field from your document model that is embedded.
{ "text": "your-text-field" }The read parameters for the embedding model.
The write parameters for the embedding model.
{
"field_map": { "text": "your-text-field" },
"metric": "cosine",
"model": "multilingual-e5-large",
"read_parameters": { "input_type": "query", "truncate": "NONE" },
"write_parameters": { "input_type": "passage" }
}Was this page helpful?