PINECONE_API_KEY="YOUR_API_KEY"
curl "https://api.pinecone.io/models" \
-H "Api-Key: $PINECONE_API_KEY" \
-H "X-Pinecone-Api-Version: 2025-10"
{
"models": [
{
"model": "llama-text-embed-v2",
"short_description": "A high performance dense embedding model optimized for multilingual and cross-lingual text question-answering retrieval with support for long documents (up to 2048 tokens) and dynamic embedding size (Matryoshka Embeddings).",
"type": "embed",
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 2048,
"max_batch_size": 96,
"provider_name": "NVIDIA",
"supported_metrics": [
"Cosine",
"DotProduct"
],
"supported_dimensions": [
384,
512,
768,
1024,
2048
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE",
"START"
]
},
{
"parameter": "dimension",
"required": false,
"default": 1024,
"type": "one_of",
"value_type": "integer",
"allowed_values": [
384,
512,
768,
1024,
2048
]
}
]
},
{
"model": "multilingual-e5-large",
"short_description": "A high-performance dense embedding model trained on a mixture of multilingual datasets. It works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "embed",
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 507,
"max_batch_size": 96,
"provider_name": "Microsoft",
"supported_metrics": [
"Cosine",
"Euclidean"
],
"supported_dimensions": [
1024
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
},
{
"model": "pinecone-sparse-english-v0",
"short_description": "A sparse embedding model for converting text to sparse vectors for keyword or hybrid semantic/keyword search. Built on the innovations of the DeepImpact architecture.",
"type": "embed",
"vector_type": "sparse",
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 96,
"provider_name": "Pinecone",
"supported_metrics": [
"DotProduct"
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
},
{
"parameter": "return_tokens",
"required": false,
"default": false,
"type": "any",
"value_type": "boolean"
}
]
},
{
"model": "bge-reranker-v2-m3",
"short_description": "A high-performance, multilingual reranking model that works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "rerank",
"modality": "text",
"max_sequence_length": 1024,
"max_batch_size": 100,
"provider_name": "BAAI",
"supported_parameters": [
{
"parameter": "truncate",
"required": false,
"default": "NONE",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
},
{
"model": "cohere-rerank-3.5",
"short_description": "Cohere's leading reranking model, balancing performance and latency for a wide range of enterprise search applications.",
"type": "rerank",
"modality": "text",
"max_sequence_length": 40000,
"max_batch_size": 200,
"provider_name": "Cohere",
"supported_parameters": [
{
"parameter": "max_chunks_per_doc",
"required": false,
"default": 3072,
"type": "numeric_range",
"value_type": "integer",
"min": 1,
"max": 3072
}
]
},
{
"model": "pinecone-rerank-v0",
"short_description": "A state of the art reranking model that out-performs competitors on widely accepted benchmarks. It can handle chunks up to 512 tokens (1-2 paragraphs)",
"type": "rerank",
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 100,
"provider_name": "Pinecone",
"supported_parameters": [
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
}
]
}
List the embedding and reranking models hosted by Pinecone.
You can use hosted models as an integrated part of Pinecone operations or for standalone embedding and reranking. For more details, see Vector embedding and Rerank results.
PINECONE_API_KEY="YOUR_API_KEY"
curl "https://api.pinecone.io/models" \
-H "Api-Key: $PINECONE_API_KEY" \
-H "X-Pinecone-Api-Version: 2025-10"
{
"models": [
{
"model": "llama-text-embed-v2",
"short_description": "A high performance dense embedding model optimized for multilingual and cross-lingual text question-answering retrieval with support for long documents (up to 2048 tokens) and dynamic embedding size (Matryoshka Embeddings).",
"type": "embed",
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 2048,
"max_batch_size": 96,
"provider_name": "NVIDIA",
"supported_metrics": [
"Cosine",
"DotProduct"
],
"supported_dimensions": [
384,
512,
768,
1024,
2048
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE",
"START"
]
},
{
"parameter": "dimension",
"required": false,
"default": 1024,
"type": "one_of",
"value_type": "integer",
"allowed_values": [
384,
512,
768,
1024,
2048
]
}
]
},
{
"model": "multilingual-e5-large",
"short_description": "A high-performance dense embedding model trained on a mixture of multilingual datasets. It works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "embed",
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 507,
"max_batch_size": 96,
"provider_name": "Microsoft",
"supported_metrics": [
"Cosine",
"Euclidean"
],
"supported_dimensions": [
1024
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
},
{
"model": "pinecone-sparse-english-v0",
"short_description": "A sparse embedding model for converting text to sparse vectors for keyword or hybrid semantic/keyword search. Built on the innovations of the DeepImpact architecture.",
"type": "embed",
"vector_type": "sparse",
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 96,
"provider_name": "Pinecone",
"supported_metrics": [
"DotProduct"
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
},
{
"parameter": "return_tokens",
"required": false,
"default": false,
"type": "any",
"value_type": "boolean"
}
]
},
{
"model": "bge-reranker-v2-m3",
"short_description": "A high-performance, multilingual reranking model that works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "rerank",
"modality": "text",
"max_sequence_length": 1024,
"max_batch_size": 100,
"provider_name": "BAAI",
"supported_parameters": [
{
"parameter": "truncate",
"required": false,
"default": "NONE",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
},
{
"model": "cohere-rerank-3.5",
"short_description": "Cohere's leading reranking model, balancing performance and latency for a wide range of enterprise search applications.",
"type": "rerank",
"modality": "text",
"max_sequence_length": 40000,
"max_batch_size": 200,
"provider_name": "Cohere",
"supported_parameters": [
{
"parameter": "max_chunks_per_doc",
"required": false,
"default": 3072,
"type": "numeric_range",
"value_type": "integer",
"min": 1,
"max": 3072
}
]
},
{
"model": "pinecone-rerank-v0",
"short_description": "A state of the art reranking model that out-performs competitors on widely accepted benchmarks. It can handle chunks up to 512 tokens (1-2 paragraphs)",
"type": "rerank",
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 100,
"provider_name": "Pinecone",
"supported_parameters": [
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
}
]
}
PINECONE_API_KEY="YOUR_API_KEY"
curl "https://api.pinecone.io/models" \
-H "Api-Key: $PINECONE_API_KEY" \
-H "X-Pinecone-Api-Version: 2025-10"
{
"models": [
{
"model": "llama-text-embed-v2",
"short_description": "A high performance dense embedding model optimized for multilingual and cross-lingual text question-answering retrieval with support for long documents (up to 2048 tokens) and dynamic embedding size (Matryoshka Embeddings).",
"type": "embed",
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 2048,
"max_batch_size": 96,
"provider_name": "NVIDIA",
"supported_metrics": [
"Cosine",
"DotProduct"
],
"supported_dimensions": [
384,
512,
768,
1024,
2048
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE",
"START"
]
},
{
"parameter": "dimension",
"required": false,
"default": 1024,
"type": "one_of",
"value_type": "integer",
"allowed_values": [
384,
512,
768,
1024,
2048
]
}
]
},
{
"model": "multilingual-e5-large",
"short_description": "A high-performance dense embedding model trained on a mixture of multilingual datasets. It works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "embed",
"vector_type": "dense",
"default_dimension": 1024,
"modality": "text",
"max_sequence_length": 507,
"max_batch_size": 96,
"provider_name": "Microsoft",
"supported_metrics": [
"Cosine",
"Euclidean"
],
"supported_dimensions": [
1024
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
},
{
"model": "pinecone-sparse-english-v0",
"short_description": "A sparse embedding model for converting text to sparse vectors for keyword or hybrid semantic/keyword search. Built on the innovations of the DeepImpact architecture.",
"type": "embed",
"vector_type": "sparse",
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 96,
"provider_name": "Pinecone",
"supported_metrics": [
"DotProduct"
],
"supported_parameters": [
{
"parameter": "input_type",
"required": true,
"type": "one_of",
"value_type": "string",
"allowed_values": [
"query",
"passage"
]
},
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
},
{
"parameter": "return_tokens",
"required": false,
"default": false,
"type": "any",
"value_type": "boolean"
}
]
},
{
"model": "bge-reranker-v2-m3",
"short_description": "A high-performance, multilingual reranking model that works well on messy data and short queries expected to return medium-length passages of text (1-2 paragraphs)",
"type": "rerank",
"modality": "text",
"max_sequence_length": 1024,
"max_batch_size": 100,
"provider_name": "BAAI",
"supported_parameters": [
{
"parameter": "truncate",
"required": false,
"default": "NONE",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
},
{
"model": "cohere-rerank-3.5",
"short_description": "Cohere's leading reranking model, balancing performance and latency for a wide range of enterprise search applications.",
"type": "rerank",
"modality": "text",
"max_sequence_length": 40000,
"max_batch_size": 200,
"provider_name": "Cohere",
"supported_parameters": [
{
"parameter": "max_chunks_per_doc",
"required": false,
"default": 3072,
"type": "numeric_range",
"value_type": "integer",
"min": 1,
"max": 3072
}
]
},
{
"model": "pinecone-rerank-v0",
"short_description": "A state of the art reranking model that out-performs competitors on widely accepted benchmarks. It can handle chunks up to 512 tokens (1-2 paragraphs)",
"type": "rerank",
"modality": "text",
"max_sequence_length": 512,
"max_batch_size": 100,
"provider_name": "Pinecone",
"supported_parameters": [
{
"parameter": "truncate",
"required": false,
"default": "END",
"type": "one_of",
"value_type": "string",
"allowed_values": [
"END",
"NONE"
]
}
]
}
]
}
Required date-based version header
Filter models by type ('embed' or 'rerank').
Filter models by type.
Possible values: embed or rerank.
Filter embedding models by vector type ('dense' or 'sparse'). Only relevant when type=embed.
Filter models by vector type.
Possible values: dense or sparse.
The list of available models.
The list of available models.
List of available models.
Show child attributes
Was this page helpful?