from pinecone import Pinecone
pc = Pinecone(api_key="YOUR_API_KEY")
model = pc.inference.get_model(model_name="llama-text-embed-v2")
print(model)
{'default_dimension': 1024,
'max_batch_size': 96,
'max_sequence_length': 2048,
'modality': 'text',
'model': 'llama-text-embed-v2',
'provider_name': 'NVIDIA',
'short_description': 'A high performance dense embedding model optimized for '
'multilingual and cross-lingual text question-answering '
'retrieval with support for long documents (up to 2048 '
'tokens) and dynamic embedding size (Matryoshka '
'Embeddings).',
'supported_dimensions': [384, 512, 768, 1024, 2048],
'supported_metrics': [cosine, dotproduct],
'supported_parameters': [{'allowed_values': ['query', 'passage'],
'parameter': 'input_type',
'required': True,
'type': 'one_of',
'value_type': 'string'},
{'allowed_values': ['END', 'NONE', 'START'],
'default': 'END',
'parameter': 'truncate',
'required': False,
'type': 'one_of',
'value_type': 'string'},
{'allowed_values': [384, 512, 768, 1024, 2048],
'default': 1024,
'parameter': 'dimension',
'required': False,
'type': 'one_of',
'value_type': 'integer'}],
'type': 'embed',
'vector_type': 'dense'}
Get a description of a model hosted by Pinecone.
You can use hosted models as an integrated part of Pinecone operations or for standalone embedding and reranking. For more details, see Vector embedding and Rerank results.
from pinecone import Pinecone
pc = Pinecone(api_key="YOUR_API_KEY")
model = pc.inference.get_model(model_name="llama-text-embed-v2")
print(model)
{'default_dimension': 1024,
'max_batch_size': 96,
'max_sequence_length': 2048,
'modality': 'text',
'model': 'llama-text-embed-v2',
'provider_name': 'NVIDIA',
'short_description': 'A high performance dense embedding model optimized for '
'multilingual and cross-lingual text question-answering '
'retrieval with support for long documents (up to 2048 '
'tokens) and dynamic embedding size (Matryoshka '
'Embeddings).',
'supported_dimensions': [384, 512, 768, 1024, 2048],
'supported_metrics': [cosine, dotproduct],
'supported_parameters': [{'allowed_values': ['query', 'passage'],
'parameter': 'input_type',
'required': True,
'type': 'one_of',
'value_type': 'string'},
{'allowed_values': ['END', 'NONE', 'START'],
'default': 'END',
'parameter': 'truncate',
'required': False,
'type': 'one_of',
'value_type': 'string'},
{'allowed_values': [384, 512, 768, 1024, 2048],
'default': 1024,
'parameter': 'dimension',
'required': False,
'type': 'one_of',
'value_type': 'integer'}],
'type': 'embed',
'vector_type': 'dense'}
from pinecone import Pinecone
pc = Pinecone(api_key="YOUR_API_KEY")
model = pc.inference.get_model(model_name="llama-text-embed-v2")
print(model)
{'default_dimension': 1024,
'max_batch_size': 96,
'max_sequence_length': 2048,
'modality': 'text',
'model': 'llama-text-embed-v2',
'provider_name': 'NVIDIA',
'short_description': 'A high performance dense embedding model optimized for '
'multilingual and cross-lingual text question-answering '
'retrieval with support for long documents (up to 2048 '
'tokens) and dynamic embedding size (Matryoshka '
'Embeddings).',
'supported_dimensions': [384, 512, 768, 1024, 2048],
'supported_metrics': [cosine, dotproduct],
'supported_parameters': [{'allowed_values': ['query', 'passage'],
'parameter': 'input_type',
'required': True,
'type': 'one_of',
'value_type': 'string'},
{'allowed_values': ['END', 'NONE', 'START'],
'default': 'END',
'parameter': 'truncate',
'required': False,
'type': 'one_of',
'value_type': 'string'},
{'allowed_values': [384, 512, 768, 1024, 2048],
'default': 1024,
'parameter': 'dimension',
'required': False,
'type': 'one_of',
'value_type': 'integer'}],
'type': 'embed',
'vector_type': 'dense'}
The name of the model to look up.
The model details.
Represents the model configuration including model type, supported parameters, and other model details.
Was this page helpful?