search_records
operation with the following parameters:
namespace
to query. To use the default namespace, set the namespace to "__default__"
.query.inputs.text
parameter with the query text. Pinecone uses the embedding model integrated with the index to convert the text to a sparse vector automatically.query.top_k
parameter with the number of similar records to return.fields
to return in the response. If not specified, the response will include all fields.example-namespaces
namespace:
query
operation with the following parameters:
namespace
to query. To use the default namespace, set the namespace to "__default__"
.sparse_vector
parameter with the sparse vector values and indices.top_k
parameter with the number of results to return.include_values
and/or include_metadata
to true
to include the vector values and/or metadata of the matching records in the response. However, when querying with top_k
over 1000, avoid returning vector data or metadata for optimal performance.example-namespaces
namespace:
query
operation with the following parameters:
namespace
to query. To use the default namespace, set the namespace to "__default__"
.id
parameter with the unique record ID containing the sparse vector to use as the query.top_k
parameter with the number of results to return.include_values
and/or include_metadata
to true
to include the vector values and/or metadata of the matching records in the response. However, when querying with top_k
over 1000, avoid returning vector data or metadata for optimal performance.example-namespace
namespace that best match the sparse vector in the record: